\qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) The approximate measure of the angle that represents 40 out of 100 responses in a pie chart is
A) 216°.
B) 144°.
C) 60°.
D) 40°.
2) Find the median of the numbers: $\begin{array}{llll}35 & 38 & 29 & 42\end{array}$
A) 35.5
B) 73
C) 36.5
D) 36
3) The first quartile $\left(Q_{1}\right)$ is
A) the median of the numbers less than the median of a set of data.
B) the same as the frequency of the first category in a histogram.
C) the average of the two smallest numbers in a set of data.
D) the smallest number in a set of data.
4) A five- number summary for a box plot includes which of the following?
A) min, median, max, average, frequency total
B) $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, total
C) $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, average
D) min, $Q_{1}, Q_{2}, Q_{3}, \max$
5) Given the following five- number summary, find the interquartile range.

29, 37, 50, 66, 94
A) 29
B) 50
C) 65
D) 32.5
6) The manager of a small retail store counted the number of sales each hour during a 60 - hour week. The frequency distribution is given below.

Number of sales during hour	Number of occurrences
6	25
7	20
8	10
9	0
10	5

The relative frequency of seven sales during an hour is
A) $\frac{1}{3}$.
B) $\frac{7}{40}$.
C) $\frac{7}{60}$.
D) $\frac{1}{4}$.
E) none of the above
7) The manager of a small retail store counted the number of sales each hour during a 60 - hour week. The frequency distribution is given below.

Number of sales during hour	Number of occurrences
6	25
7	20
8	10
9	0
10	5

The average number of sales during an hour is
A) $8 \frac{1}{2}$.
B) 6 .
C) 7 .
D) 8 .
E) none of the above
8) Which of the following can be a probability distribution for the random variable X ?

A) | k |
| :--- |
| -3 |

$1 \quad \frac{5}{12}$

B) | k | $\operatorname{Pr}(X=k)$ |
| :---: | :---: |
| -2 | $\frac{1}{3}$ |

C) | 4 | $\frac{1}{3}$ |
| :---: | :---: |
| k | $\operatorname{Pr}(X=k)$ |
| 0 | $\frac{1}{6}$ |
| 1 | $\frac{5}{2}$ |
| 3 | $\frac{2}{3}$ |

$0 \quad \frac{5}{12}$
$1 \quad \frac{1}{4}$
) $k \quad \operatorname{Pr}(X=k)$
$\frac{1}{6}$
$3 \quad \frac{2}{3}$
D) $\frac{k \quad \operatorname{Pr}(X=k)}{1} \frac{1}{3}$
$2-\frac{1}{6}$
$3 \quad \frac{5}{6}$
9) Let X denote the number of boys in a family with four children. $\operatorname{Pr}(X \geq 3)$ is
A) $\frac{11}{16}$.
B) $\frac{5}{16}$.
C) $\frac{2}{3}$.
D) $\frac{1}{4}$.
E) none of the above
10) A church sells 2000 lottery tickets on a new car worth $\$ 7000$. Each ticket costs $\$ 5$. If you buy one ticket, your expected winning is
A) $\frac{7}{2}$.
B) $-\frac{3}{2}$.
C) $-\frac{1999}{400}$.
D) $-\frac{599}{400}$.
E) none of the above
11) Consider the probability distribution below:

k	$\operatorname{Pr}(X=k)$
-10	0.2
20	0.6
25	0.2

The mean is
A) 25 .
B) 20 .
C) 15
D) 35
E) none of the above
12) Consider the probability distribution below:

k	$\operatorname{Pr}(X=k)$
-10	0.2
20	0.6
25	0.2

The variance is
A) 140
B) 35
C) 160
D) 200
E) none of the above
13) A certain probability distribution has mean 100 and variance 5 . The standard deviation is
A) $\sqrt{5}$.
B) 20 .
C) 500 .
D) 25 .
E) none of the above
14) Suppose that a probability distribution has mean 20 and standard deviation 3 . The Chebychev inequality states that the probability that an outcome lies between 16 and 24 is
A) at least $\frac{1}{4}$.
B) at $\operatorname{most} \frac{1}{4}$.
C) less than $\frac{7}{16}$.
D) at least $\frac{7}{16}$.
E) none of the above
15) If Z is the standard normal random variable, then $\operatorname{Pr}(Z \leq 0.5)$ is
A) 0.7723
B) 0.6915 .
C) 0.3085
D) .2277
E) none of the above
16) If Z is the standard normal random variable, then $\operatorname{Pr}(Z \geq 0.6)$ is
A) 0.7257 .
B) 0.2743 .
C) 0.2254 .
D) 0.5987 .
E) none of the above
17) If X is the standard normal random variable, then $\operatorname{Pr}(-1.5 \leq X \leq 0)$ is
A) 0.0668 .
B) 0.5000 .
C) 0.4332 .
D) 0.9332 .
E) none of the above
18) If X is the standard normal random variable, then $\operatorname{Pr}(-1.5 \leq X \leq 1.5)$ is
A) 0.8664
B) 0.0668
C) 0.9332
D) 0.5000 .
E) none of the above
19) The lifetimes of a certain model of television's picture tubes are normally distributed with $\mu=48$ months and σ $=8$ months. The manufacturer wants to issue a warranty that will be written so that about 92% of the picture tubes will outlast the warranty. For how many months should the picture tubes be guaranteed?
A) 44.16
B) 59.20
C) 36.80
D) 40.64
E) none of the above

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Use a table to find the area of the shaded regions under the standard normal curve.
20)

Find the value of z for which the area of the shaded region under the standard normal curve is given. 21)

